Experimental Study of Magnetic Reconnection on MRX

Masaaki Yamada

In collaboration with S. Dorfman, H. Ji, R. Kulsrud, E. Oz, J. Yoo
Princeton Plasma Physics Laboratory

IPELS 2009, Sweden
Outline

• Introduction
 – dedicated reconnection experiments
• Recent results from Magnetic Reconnection Experiment (MRX)
 – Collisionless reconnection => Two fluids physics
 – Two-scale diffusion region
 – MRX scaling regarding collisionality
• Outstanding issues on reconnection
• New experiment for solar flare dynamics
Goals of Lab Experiments

• Learn the physics of fundamental processes from plasmas
 (Not to simulate space phenomena)

• Check/verify theoretical concepts

• Compare data with observations/simulations

• Discover new physics
Dedicated Reconnection Experiments

<table>
<thead>
<tr>
<th>Device</th>
<th>Site</th>
<th>Built</th>
<th>PI’s</th>
<th>Geometry</th>
<th>Res. Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-CS</td>
<td>Russia</td>
<td>1970</td>
<td>Syrovatskii, Frank</td>
<td>Linear</td>
<td>Guide field</td>
</tr>
<tr>
<td>LPD, LAPD</td>
<td>UCLA</td>
<td>1980</td>
<td>Stenzel, Gekelman</td>
<td>Linear</td>
<td>Heating, waves</td>
</tr>
<tr>
<td>TS-3/4</td>
<td>Tokyo</td>
<td>1990</td>
<td>Katsurai, Ono</td>
<td>Toroidal Merging</td>
<td>Heating</td>
</tr>
<tr>
<td>MRX</td>
<td>Princeton</td>
<td>1995</td>
<td>Yamada, Ji</td>
<td>Driven, merging</td>
<td>2-fluid effects, waves, scaling</td>
</tr>
<tr>
<td>SSX</td>
<td>Swarthmore</td>
<td>1996</td>
<td>Brown</td>
<td>Merging</td>
<td>Heating</td>
</tr>
<tr>
<td>VTF</td>
<td>MIT</td>
<td>1998</td>
<td>Egedal</td>
<td>Toroidal with guide B</td>
<td>Trigger, waves</td>
</tr>
<tr>
<td>RSX</td>
<td>Los Alamos</td>
<td>2002</td>
<td>Intrator</td>
<td>Linear</td>
<td>Boundary</td>
</tr>
<tr>
<td>RWX</td>
<td>Wisconsin</td>
<td>2002</td>
<td>Forest</td>
<td>Linear</td>
<td>Line-tying</td>
</tr>
</tbody>
</table>
Magnetic Reconnection: Recent Progress

- Two-fluid effects in the local reconnection layer analyzed thru strong collaboration between space and lab research
 - Ion diffusion region and electron diffusion regions identified: in 2-scales
 - Electromagnetic and electrostatic fluctuations analyzed
- Transition from collisional MHD to collisionless regime established
- Role of reconnection in magnetic self-organization investigated
- Multiple reconnection layers \iff Global reconnection
Magnetic reconnection happens at both magnetopause and magnetotail.

Two fluid effects are dominant when $\delta_{ns} \sim c/\omega_{pi}$

Magnetic Reconnection Experiment (MRX).
Goals: Create a prototypical reconnection layer to study the elementary processes
Experimental Setup and Formation of Current Sheet on MRX

Experimentally measured flux evolution

\[n_e = 1 - 10 \times 10^{13} \text{ cm}^{-3}, \]
\[T_e \sim 5 - 15 \text{ eV}, \]
\[B \sim 100 - 500 \text{ G}, \]
Neutral sheet Shape in MRX changes from “Rectangular S-P” type to “Double edge X” shape as collisionality is reduced.

Rectangular shape
- Collisional regime: $\lambda_{mfp} < \delta$
- Slow reconnection
- No Q-P field

X-type shape
- Collisionless regime: $\lambda_{mfp} > \delta$
- Fast reconnection
- Q-P field present
- Hall effects
Evolution of magnetic field lines during reconnection in MRX
Two-scale Diffusion Region measured in MRX

The electron diffusion region identified inside of the ion diffusion region

\(<=>\) The first observation of two-scale diffusion region

[Ren et al, PRL 08]

\[d \sim 5-7 \left(c/\omega_{pe} \right) \gg d_{\text{Theory}} \]

EM (LHW) fluctuations observed

\(\Rightarrow\) Close collaboration with space physics community
Electrostatic waves observed at CS Edge: Electromagnetic waves at the center appear to be more important

Carter et al. PRL ('02) Identified as LHDW

EM waves => S. Dorfman

Bale et al. GRL ('02) Vaivads et al. GRL ('04)
MRX Scaling: $\eta^* \text{ vs } (c/\omega_i)/\delta_{sp}$

A linkage between space and lab on reconnection

$\eta^* \equiv \frac{E_\theta}{j_\theta}$

$\frac{(c/\omega_{pi})}{\delta_{sp}} \sim 5(\lambda_{mfp}/L)^{1/2}$

MRX scaling shows a transition from the MHD to 2 fluid regime based on $(c/\omega_{pi})/\delta_{sp}$

Yamada et al, PoP 2006
Linkages between space and lab on reconnection

<table>
<thead>
<tr>
<th>System</th>
<th>L (cm)</th>
<th>B (G)</th>
<th>(\frac{d_i}{c/\omega_{pi}}) (cm)</th>
<th>(\delta_{sp}) (cm)</th>
<th>(\frac{d_i}{\delta_{sp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRX/SSX</td>
<td>10</td>
<td>100-500</td>
<td>1-5</td>
<td>0.1-5</td>
<td>.2-100</td>
</tr>
<tr>
<td>MST/Tokamak</td>
<td>30/100</td>
<td>(10^3/10^4)</td>
<td>10</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>Magnetosphere</td>
<td>(10^9)</td>
<td>(10^{-3})</td>
<td>(10^7)</td>
<td>(10^4)</td>
<td>1000</td>
</tr>
<tr>
<td>Solar flare</td>
<td>(10^9)</td>
<td>100</td>
<td>(10^4)</td>
<td>(10^2)</td>
<td>100</td>
</tr>
<tr>
<td>ISM</td>
<td>(10^{18})</td>
<td>(10^{-6})</td>
<td>(10^7)</td>
<td>(10^{10})</td>
<td>0.001</td>
</tr>
<tr>
<td>Proto-star</td>
<td></td>
<td></td>
<td>(\frac{d_i}{\delta_s} \gg 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{d_i}{\delta_{sp}} \sim 5 \left(\frac{\lambda_{mfp}}{L} \right)^{1/2}
\]
Future main issues for magnetic reconnection research

- **Identify main mechanisms for energy dissipation in the 2-fluid diffusion region**
 - Particle acceleration and heating
- **Effects of guide field (2D & 3D)**
- **Effects of EM/ES fluctuations**
- **Effects of boundary conditions**

- **Find guiding principles for 3-D global reconnection phenomena**
 - Global energy flows
 - Multiple current sheets
 - Magnetic self-organization
 - Impulsive reconnection

⇒ Yamada, Kulsrud, Ji; Rev. Mod. Phys. (2009)
Zweibel & Yamada; Ann Rep AA. (2009)
New Setup for MRX-Solar Flare Experiment

- Electrodes ~ 15 cm diameter
- \(R = 15-30 \) cm
- Angle \(90^\circ-180^\circ \)
- \(B_t \): Toroidal field 0 -1200 Gauss
- \(B_z \): Strapping field 0-100 Gauss
- The flux cores were not utilized in the experiments
Electrodes inside the MRX vacuum vessel

Flare photos taken with a commercial Canon Powershot 100 µs exposure
Safety factor q determines the stability of simulated flux loop in MRX

B_p vectors & j counters (color): Framing camera photos

Stable

- $B_{\text{toroidal}} = 1055 \text{ G}$

Unstable

- $B_{\text{toroidal}} = 360 \text{ G}$

- R_p, q_a value

![Graphs showing stability and instability with B_{toroidal} values and q_a plots.](image)